Berlin-Poznań-Hamburg-Warsaw Seminar

 24-25 September 2021, Będlewo, Poland Program| Thursday | | |
| :---: | :---: | :---: |
| 19:00-20:00 | Dinner | |
| Friday | | |
| 8:00-9:00 | Breakfast | |
| 9:30-12:30 | Random walk in nearby forest | |
| 13:30-14:30 | Lunch | |
| 14:30-16:00 | Session 1 (Warsaw) | |
| 14:30-14:55 | Karolina Okrasa | Balanced separators in hereditary graph classes |
| 15:00-15:25 | Marta Piecyk | Faster 3-coloring of small-diameter graphs |
| 15:30-16:00 | Michał Dębski | Conflict-free chromatic index of graphs |
| 16:00-16:30 | Coffee | |
| 16:30-18:30 | Session 2 (Hamburg, mostly) | |
| 16:30-16:55 | Pranshu Gupta | Ramsey simplicity of random graphs |
| 17:00-17:25 | Olaf Parczyk | The square of a Hamilton cycle in randomly perturbed graphs |
| 17:30-17:55 | Yannick Mogge | Connector-Breaker Games on random boards |
| 18:00-18:25 | Simón Piga | Codegree threshold for tight euler tours and cycles decompositions |
| 19:00 | Banquet | |
| Saturday | | |
| 8:00-9:00 | Breakfast | |
| 10:00-11:00 | Session 3 (Berlin) | |
| 10:00-10:25 | David Fabian | The running time of tree bootstrap percolation* |
| 10:30-11:00 | Michael Anastos | Longest Cycles in Sparse Random Graphs and Where to Find Them |
| 11:00-11:30 | Coffee | |
| 11:30-13:00 | Session 4 (Poznań) | |
| 11:30-11:55 | Grzegorz Adamski | Online Ramsey numbers and the golden ratio* |
| 12:00-12:25 | Sylwia Antoniuk | Properly colored Hamilton cycles in Dirac-type hypergraphs |
| 12:30-12:55 | Andrzej Ruciński | Subgraphs games in semi-random (hyper)graphs processes |
| 13:00-14:00 | Lunch | |

Abstracts

David Fabian, The running time of tree bootstrap percolation

The bootstrap process of a graph H on a graph G is the sequence $\left(G_{i}\right)_{i \geqslant 0}$, where $G_{0}:=G$ and G_{i} is obtained from G_{i-1} by adding every edge which completes a copy of H. We investigate the maximum running time $M_{H}(n)$, which is the smallest integer satisfying $G_{i+1}=G_{i}$ for all $i \geqslant M_{H}(n)$ and every graph G on n vertices, and show that when H is a tree there exists a constant c_{H} such that $M_{H}(n) \leqslant c_{H}$.

This is joint work with Patrick Morris and Tibor Szabó.

Grzegorz Adamski, Online Ramsey numbers and the golden ratio

Consider a game played by 2 players, Builder and Painter. In each turn, Builder chooses some edge from infinite clique $K_{\mathbb{N}}$. Then Painter chooses if this edge will be red or blue. The game ends when there is a copy of graph from a set of "forbidden" 2-coloured graphs F. Builder's goal is to end the game as fast as possible and Painter's goal is the opposite. The online Ramsey number $\tilde{r}(F)$ is the number of moves in the game where both players play optimally.

I will present results for the case where F consists of red cycle C_{k} and blue path P_{n} where $k=3,4$.

This is joint work with Małgorzata Bednarska-Bzdegga.

