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Base-b normality 1/2

Definition

For b ∈ N≥2, a number x ∈ [0, 1] is normal base-b if for ℓ ∈ N
and any word w ∈ {0, 1, · · · , b − 1}ℓ, the word w appears in the
base-b expansion of x with the correct frequency. More explicitly, if
x = (0.x1x2 · · · xn · · · )b, then

lim
N→∞

1

N
#{1 ≤ n ≤ N | w = xnxn+1 · · · xn+ℓ−1} = b−ℓ. (1)

Equivalently, x is normal base-b if the sequence (bnx)∞n=1 is
uniformly distributed in [0, 1]. More explicitly, if for any
0 < a < c < 1 we have

lim
N→∞

1

N
# {1 ≤ n ≤ N | bnx ∈ (a, c)} = c − a. (2)
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Base-b normality 2/2

We observe that for x ∈ [0, 1] with a base-2 expansion of
x = 0.x1x2 · · · xn · · · , we have

2nx (mod 1) ∈



[0, 1
2
) iff xn+1 = 0

[1
2
, 1) iff xn+1 = 1

[0, 1
4
) iff (xn+1, xn+2) = (0, 0)

[1
4
, 2
4
) iff (xn+1, xn+2) = (0, 1)

[2
4
, 3
4
) iff (xn+1, xn+2) = (1, 0)

[3
4
, 4
4
) iff (xn+1, xn+2) = (1, 1).

More generally, if x = (0.x1x2 · · · xn · · · )b and
w = (w1, · · · ,wℓ) ∈ {0, 1, · · · , b − 1}ℓ, then

bnx (mod 1) ∈ [
ℓ∑

j=1

wj

bj
,

ℓ∑
j=1

wj

bj
+

1

bℓ
) iff (xn+1, · · · , xn+ℓ) = w .
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Cantor series

Given a basic sequence (sequence of bases) Q = (qn)∞n=1 ∈ NN
≥2

and some x ∈ [0, 1], the base Q expansion x = (0.x1x2 · · · xn · · · )Q
with 0 ≤ xi < qi is defined by

x =
∞∑
n=1

xi

(
n∏

j=1

qj

)−1

=
x1
q1

+
x2
q1q2

+
x3

q1q2q3
+ · · · (3)
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Normality for a Cantor series

Given a basic sequence Q = (qn)∞n=1 and an
x = (0.x1x2 · · · xn · · · )Q ∈ [0, 1], we say that x is Q-normal if for
any block b = (b1, · · · , bℓ) ∈ Zℓ

≥0 satisfying

MB(N) :=
N∑

n=1

(
ℓ∏

j=1

1

qn+j
1[0,qn+j )(bj)

)
−→
N→∞

∞,

we have

lim
N→∞

#{1 ≤ n ≤ N | xnxn+1 · · · xn+ℓ−1 = B}/MB(N) = 1.

Intuitively, if the block B can appear with a positive frequency,
then B appears with the correct frequency.
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Dynamical normality for a Cantor series

Given a basic sequence Q = (qn)∞n=1 and an x ∈ [0, 1], we say that
x is Q-dynamically normal if the sequence
(x , q1x , q2q1x , · · · , qnqn−1 · · · q2q1x , · · · ) is uniformly distributed.
For a general basic sequence Q, the notions of Q-normality and
Q-dynamical normality don’t need to be the same.
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Dynamically generated basic sequences

Definition

A basic sequence Q = (qn)∞n=1 is dynamically generated if there
exists an ergodic measure preserving system (X ,B, µ,T ), a
measurable function f : X → N≥2, and a point y ∈ X which is
generic with respect to T and each {1f −1({n})}n≥2 for which
qn = f (T ny).

1 If X = {1} and T is (necessarily) the identity, then we
recover base-b, i.e., qn = b for all n.

2 If X = {0, 1}, Tx = x + 1 (mod 2), and f (i) = bi , then we
get qn = b0 if n is even and qn = b1 if n is odd. (See [1])

3 If X = [0, 1], Tx = x + α (mod 1) with α ∈ R \Q, and
f = 21[0, 1

2
) + 31[ 1

2
,1), then (qn)∞n=1 will be almost periodic

sequence of 2s and 3s.
4 We may also consider f (x) =

⌊
1
x

⌋
in the previous example.
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Uniform normality of a Cantor series

Let Q = (qn)∞n=1 be a dynamically generated basic sequences. For
each block B = (b1, · · · , bℓ) ∈ NN

≥2, we have that

QB(N) :=
1

N
#{1 ≤ n ≤ N | (qn, qn+1, · · · , qn+ℓ−1) = B} −→

N→∞

exists. x = (0.x1x2 · · · xn · · · )Q ∈ [0, 1] is Q-uniformly normal if
for any block of digits D = (d1, · · · , dℓ), and any block of bases
B = (b1, · · · , bℓ) with bj > dj for all j , we have

lim
N→∞

1

QB(N)
#{1 ≤ n ≤ N | (xn, · · · , xn+ℓ−1) = D &

(qn, · · · , qn+ℓ−1) = B} =
ℓ∏

j=1

1

bj
,

provided that QB(N) → ∞.
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Uniform dynamical normality of a Cantor series

Let Q = (qn)∞n=1 be a dynamically generated basic sequence,
generated by the m.p.s. (X ,B, µ,T ) and the function
f : X → N≥2. In particular, we have qn = f (T ny) for some y ∈ X .
Furthermore, let us assume that this representation is minimal in
the sense that that σ-algebra generated by f and T is B. A
number x ∈ [0, 1] is Q-uniformly dynamically normal if
(Sn(y , x))∞n=1 is uniformly distributed in X × [0, 1], where
S(y , x) = (Ty , f (y)x).
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A nice equivalence

Theorem

Let Q = (qn)∞n=1 be a dynamically generated basic sequence.
x ∈ [0, 1] is uniformly normal if and only if it is uniformly
dynamically normal.
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When Dynamical normality implies normality

Theorem

If g , k ∈ N≥2 and Q = (qn)∞n=1 ∈ {g , g 2, · · · , g k}N is dynamically
generated by a deterministic (zero-entropy) dynamical system, and
x is Q-dynamically normal, then x is Q-uniformly dynamically
normal. In particular, x is Q-normal. To be more precise, assume
that (X ,B, µ,T ) is a deterministic (zero-entropy) dynamical
system, and f : X → {g , g 2, · · · , g k} (e.g., {2, 4}) is a measurable
function such that qn = f (T ny) for some generic point y .

Examples (up to ismorphism) with (X ,B, µ) = ([0, 1],B,m) and
f = 21[0, 1

2
) + 41[ 1

2
,1).

1 Tx = x + α (mod 1) with α ∈ R \Q.
2 T is any finite interval exchange transformation.
3 T is the Horocycle flow.
4 (qn)∞n=1 “is” the Thue-Morse sequence with 2s and 4s.
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When dynamical normality doesn’t imply normality

Sketch: Let x ∈ [0, 1] be normal base-4 (which is the same as
normal base-2). We will now construct a sequence
(qn))∞n=1 ∈ {2, 4}N in which the 2s always appear in blocks of even
size (groups of 2,4,6,...). We let q1 = q2 = 2 if x ∈ [1

2
, 1) and

q1 = 4 otherwise. We now replace x with 4x and repeat this
procedure inductively to construct the rest of the qn. The number
x is Q-dynamically normal by construction, but it is not Q-normal
since the digits 2 and 3 never appear.
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When normality doesn’t imply dynamical normality

Theorem

There exists a dynamically generated sequences Q = (qn)∞n=1 and a
sequence of digits (En)∞n=1 for which x = E1E2 · · ·En · · · is normal
but not dynamically normal.

Proof: Let Ω be a probability space and (qn(ω1))∞n=1 a sequences
of i.i.d. random variables taking values in {2, 3} (can also be done
for {2,4}) with P(Xn = 2) = P(Xn = 3) = 1

2
. Consider

En(ω1)(ω2) =



0 with probability 1
2

+ ϵ if qn(ω1) = 2

1 with probability 1
2
− ϵ if qn(ω1) = 2

0 with probability 1
3
− ϵ if qn(ω1) = 3

1 with probability 1
3

+ ϵ if qn(ω1) = 3

2 with probability 1
3

if qn(ω1) = 3.
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When normality implies dynamical normality 1/2

Conjecture

If g , k ∈ N≥2 and Q = (qn)∞n=1 ∈ {g , g 2, · · · , g k}N is dynamically
generated by a deterministic (zero-entropy) system, then every
x ∈ [0, 1] that is Q-normal is also Q-dynamically normal.

Let us now discuss a combinatorial proposition that implies the
previous conjecture. For the sake of simplicity we consider
F = {2, 4}. Suppose that (q1, q2, q3, q4) = (2, 4, 4, 2) and
x = (0.0311.....)Q . Then we see that

x =
0

2
+

3

4
·
(

1

2

)
+

1

4
·
(

1

4
· 1

2

)
+

1

2
·
(

1

4
· 1

4
· 1

2

)
+ ...

=
0

2
+

1

2
· 2−1 +

1

2
· 2−2 +

0

2
· 2−3 +

1

2
· 2−4 +

1

2
· 2−5 + ...
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When normality implies dynamical normality 2/2

In particular, we identify the base 4 with 2 copies of the base 2,
and further identify 04 = 0022, 14 = 0122, 24 = 1022, and
34 = 1122. Under this identification, does a Q-normal number
x ∈ [0, 1] become normal base 2? Note that this question could be
asked directly since x has not changed, and that the previous
discussion is only a combinatorial perspective.

Question

If Q is a dynamically generated basic sequence, and x ∈ [0, 1] is
Q-dynamically normal AND Q-normal, must x be Q-uniformly
normal?
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Mixed bases

Conjecture

If F ⊆ N≥2 is finite and Q = (qn)∞n=1 ∈ FN is dynamically
generated, then the notions of Q-dynamically normal and
Q-normal coincide if and only if Q was generated by a
deterministic (zero-entropy) system.

The fundamental problem we are trying to overcome here is that if
F = {2, 3} instead of {2, 4}, then we cannot view all of the
dynamics as coming from a factor and/or skewproduct of the ×2
map. We genuinely need to consider 2 different transformations,
the ×2 map and the ×3 map. Another fundamental problem to
overcome is how to allow F to be all of N≥2 instead of a finite set.
The difficulties here are more technical, so we omit them from
here.
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