Partition regular systems of homogeneous polynomial equations

Seminarium Zakładu Matematyki Dyskretnej
Uniwersytet Im. Adama Mickiewicza w Poznaniu

Sohail Farhangi

Slides available on sohailfarhangi.com

October 18, 2022

Overview

(1) A review of Ramsey Theory on semigroups
(2) Notions of largeness in semigroups
(3) Partition regular systems of polynomial equations

Partition regularity

Definition

Let S be a set, $n, m \in \mathbb{N}$ and $s_{0} \in S$ be arbitrary, and $f_{1}, \cdots, f_{m}: S^{n} \rightarrow S$ be functions. The system of equations

$$
\begin{align*}
f_{1}\left(s_{1}, \cdots, s_{n}\right) & =s_{0} \\
& \vdots \tag{1}\\
f_{m}\left(s_{1}, \cdots, s_{n}\right) & =s_{0}
\end{align*}
$$

is partition regular (p.r.) if for any partition $S=\bigcup_{i=1}^{r} C_{i}$, there is some $1 \leq i_{0} \leq r$ for which $C_{i_{0}}$ contais a solution to the system of equations in (1).

Positive results $1 / 2$

The following systems of equations are partition regular over \mathbb{N}.

1) $x+y=z$, Schur 1916 [12]
2) van der Waerden 1927 [13] (arithmetic progressions or A.P.s)

$$
\begin{aligned}
x_{1}-x_{2} & =x_{2}-x_{3} \\
& \vdots \\
x_{n-2}-x_{n-1} & =x_{n-1}-x_{n}
\end{aligned}
$$

3) Brauer 1928 [3] (A.P.s and their common difference)

$$
\begin{aligned}
x_{1}-x_{2} & =x_{0} \\
& \vdots \\
x_{n-1}-x_{n} & =x_{0}
\end{aligned}
$$

Positive results $2 / 2$

4) Rado 1933 [10] classified which finite systems of linear equations are p.r.
5) $x-y=p(z)$ with $p(z) \in z \mathbb{Z}[z]$, Bergelson 1996 [1] (page 53)
6) Bergelson, Moreira, and Johnson 2017 [2], for $p_{i}(x) \in x \mathbb{Z}[x]$

$$
\begin{aligned}
x_{1}-x_{2} & =p_{1}\left(x_{0}\right) \\
& \vdots \\
x_{n-1}-x_{n} & =p_{n-1}\left(x_{0}\right)
\end{aligned}
$$

7) $x^{2}-y^{2}=z$, Moreira 2017 [8]
8) $z=x^{y}$, Sahasrabudhe 2018 [11]

Negative results

The following systems of equations are not partition regular over \mathbb{N}.

1) $2 x+3 y=z$, Rado 1933 [10]
2) Rado 1933 [10]

$$
\begin{aligned}
& x+3 y=z_{1} \\
& x+2 y=2 z_{2}
\end{aligned}
$$

3) $x+y=z^{2}$ (ignoring $2+2=2^{2}$), Csikvári, Gyarmati, and Sárközy 2012 [5]
4) $x-2 y=z^{2}$, Di Nasso and Luperi Baglini 2018 [6]
5) $x^{2}-2 y^{2}=z$, Di Nasso and Luperi Baglini 2018 [6]
6) $x+y=w^{3} z^{2}$, F. and Magner 2022 [7]
7) $2 x+3 y=w z^{2}$, F. and Magner 2022 [7]
8) F. and Magner 2022 [7]

$$
\begin{aligned}
x_{1}+17 y_{1} & =w_{1} z_{1}^{100} \\
9 x_{2}+18 y_{2} & =w_{2} z_{2}^{2}
\end{aligned}
$$

Open problems

The partition regularity of the following systems of equations over \mathbb{N} is not known.

1) $x^{2}+y^{2}=z^{2}$ (VERY popular)
2) $a\left(x^{2}-y^{2}\right)=b z^{2}+d w$ (important, cf. [9])
3) $x^{3}+y^{3}+z^{3}=w^{3}$ (cf. [4])
4) $x^{3}+y^{3}+z^{3}-3 x y z=w^{3}$
5) $x^{4}+y^{4}+z^{4}=w^{4}$ (cf. [4])
6) (VERY popular, cf. [8])

$$
\begin{aligned}
w & =x y \\
z & =x+y
\end{aligned}
$$

7) $2 x-8 y=w z^{3}$ (cf. [7])
8) (cf. [7])

$$
\begin{aligned}
& 16 x_{1}+17 y_{1}=w_{1} z_{1}^{8} \\
& 33 x_{2}-17 y_{2}=w_{2} z_{2}^{8}
\end{aligned}
$$

Thick sets and syndetic sets

A Semigroup is a pair (S, \cdot) where $\cdot S \times S \rightarrow S$ is an associative operation. For our purposes, we will only focus on the semigroups $(\mathbb{N},+),(\mathbb{N}, \cdot),(R,+)$, and (R, \cdot), where R is the ring of integers of some number field $K:=\mathbb{Q}[\alpha]$. For $s \in S$ and $A \subseteq S$ we define $s A=\{s a \mid a \in A\}$ and $s^{-1} A=\{a \in S \mid s a \in A\}$.

Definition

Let (S, \cdot) be a commutative semigroup and $A \subseteq S$. The set A is thick if for any finite set $F \subseteq S$ we have $\bigcap_{f \in F} f^{-1} A \neq \emptyset$. The set A is syndetic if there exists a finite set $F \subseteq S$ such that $\bigcup_{f \in F} f^{-1} A=S$.

The set $A_{1}=\bigcup_{n=1}^{\infty}\left[n^{2}, n^{2}+n\right]$ is a thick set in $(\mathbb{N},+)$, the set $A_{2}=2 \mathbb{N}$ is a syndetic set in ($\mathbb{N},+$). For any $\left(c_{n}\right)_{n=1}^{\infty} \subseteq \mathbb{N}$, the set $A_{3}=\bigcup_{n=1}^{\infty}\left\{c_{n} p_{1}^{b_{1}} \cdots p_{n}^{b_{n}} \mid 0 \leq b_{i} \leq n \forall 1 \leq i \leq n\right\}$ is thick in (\mathbb{N}, \cdot). The set $A_{4}=\left\{n \in \mathbb{N} \mid v_{2}(n) \equiv 0(\bmod 2)\right\}$ is syndetic in (\mathbb{N}, \cdot). Exercise: The squares are not syndetic in (\mathbb{N}, \cdot).

Piecewise syndetic sets and thickly syndetic sets

Definition

Let (S, \cdot) be a commutative semigroup and $A \subseteq S$. The set A is piecewise syndetic if $A=B \cap C$ for some thick set B and some syndetic set C. The set A is thickly syndetic if $A \cap A^{\prime} \neq \emptyset$ for any piecewise syndetic set A^{\prime}.

Theorem

Let (S, \cdot) be a commutative semigroup and $A \subseteq S$.
(i) The set A is piecewise syndetic if and only if there exists a finite set $F \subseteq S$ for which $\bigcup_{f \in F} f^{-1} A$ is thick.
(ii) The set A is thickly syndetic if and only if for any finite set $F \subseteq S$ the set $\bigcap_{f \in F} f^{-1} A$ is syndetic.

Exercise: The set A of squarefree numbers is not a piecwise syndetic set in $(\mathbb{N},+)$, and A^{c} is a thickly syndetic set.

Ramsey theoretical properties of large sets

Theorem

If (S, \cdot) is a commutative semigroup and $A \subseteq S$ is piecewise syndetic, then for any partition $A=\bigcup_{i=1}^{r} A_{i}$, at least one of the A_{i} is piecewise syndetic.

Theorem

Let (S, \cdot) be a commutative semigroup and suppose that \mathbf{F} is a translation invariant system of equations. (For example, $x+y=2 z$ over $(\mathbb{N},+)$ or $x y=z^{2}$ over $\left.(\mathbb{N}, \cdot)\right)$ The following are equivalent:
(i) \mathbf{F} is partition regular over S.
(ii) For any pieceiwse syndetic set $A \subseteq S, \mathbf{F}$ has a solution contained in A.
(iii) For any very strongly central set A (a special kind of syndetic set) \mathbf{F} has a solution in A.

Difference of squares generate mult. thick sets

Lemma

Let R be an infinite integral domain and $A \subseteq R$. If A is 'A.P.' -rich (which is implied by additive or multiplicative piecewise syndeticity), then $B:=\left\{x^{2}-y^{2} \mid x, y \in A\right\}$ is multiplicatively thick.

Corollary

Let R be an infinite integral domain with field of fractions K. For any $c \in K \backslash\{0\}$, the equation

$$
\begin{equation*}
c=\frac{x^{2}-y^{2}}{w^{2}-z^{2}} \tag{2}
\end{equation*}
$$

is partition regular.

First main theorem $1 / 4$

Theorem: Let R be an integral domain with field of fractions K and $n, m \in \mathbb{N}$ arbitrary.
(i) For any $c_{0}, c_{1}, \cdots, c_{m} \in R \backslash\{0\}$, the system of equations below is partition regular over R, as it will contain a solution in any 'A.P.'-rich set A.

$$
\begin{align*}
\frac{c_{1}+c_{0}}{c_{1}} & =\frac{x^{2}-y_{1}^{2}}{w^{2}-z_{1}^{2}} \\
& \vdots \tag{3}\\
\frac{c_{m}+c_{0}}{c_{m}}= & \frac{x^{2}-y_{m}^{2}}{w^{2}-z_{m}^{2}}
\end{align*}
$$

First main theorem 2/4

(ii) For any $c_{1}, \cdots, c_{m} \in R \backslash\{0\}$, the system of equations below is partition regular over R, as it will contain a solution in any multiplicatively piecewise syndetic set A.

$$
\begin{align*}
c_{1} & =\frac{w}{z}\left(x_{1}^{2}-y_{1}^{2}\right) \tag{4}\\
& \vdots \\
c_{m} & =\frac{w}{z}\left(x_{m}^{2}-y_{m}^{2}\right)
\end{align*}
$$

(iii) For any distinct $c_{1}, c_{2} \in \mathbb{Z} \backslash\{0\}$, the system of equations below is not partition regular over \mathbb{N}.

$$
\begin{align*}
& c_{1}=\frac{w_{1}}{z_{1}}\left(x^{2}-y^{2}\right) \tag{5}\\
& c_{2}=\frac{w_{2}}{z_{2}}\left(x^{2}-y^{2}\right)
\end{align*}
$$

First main theorem 3/4

(iv) For any $c_{1}, \cdots, c_{m} \in R \backslash\{0\}$, the system of equations below is partition regular over R, as it will contain a solution in any multiplicatively piecewise syndetic set A.

$$
\begin{align*}
c_{1}= & \frac{x^{2}-y_{1}^{2}}{4 w z_{1}} \\
& \vdots \tag{6}\\
c_{m} & =\frac{x^{2}-y_{m}^{2}}{4 w z_{m}}
\end{align*}
$$

(v) For any distinct $c_{1}, c_{2} \in \mathbb{Z} \backslash\{0\}$, the system of equations below is not partition regular over \mathbb{N}.

$$
\begin{align*}
& c_{1}=\frac{x^{2}-y^{2}}{w_{1} z_{1}} \tag{7}\\
& c_{2}=\frac{x^{2}-y^{2}}{w_{2} z_{2}}
\end{align*}
$$

First main theorem 4/4

(vi) Suppose that $f_{1}, \cdots, f_{m}: K^{n} \rightarrow K$ are homogeneous of degree 1. The system of equations below is partition regular over R, as it will contain a solution in any multiplicatively piecewise syndetic set A.

$$
\begin{array}{rc}
z f_{1}\left(t_{1}, \cdots, t_{n}\right) & =x_{1}^{2}-y_{1}^{2} \\
& \vdots \tag{8}\\
z f_{m}\left(t_{1}, \cdots, t_{n}\right) & =x_{m}^{2}-y_{m}^{2}
\end{array}
$$

(vii) And if $f_{1}, \cdots, f_{m}: K^{n} \rightarrow K$ are homogeneous of degree 3 , then the same is true of the following system of equations:

$$
\begin{align*}
f_{1}\left(t_{1}, \cdots, t_{n}\right) & =z\left(x_{1}^{2}-y_{1}^{2}\right) \tag{9}\\
& \vdots \\
f_{m}\left(t_{1}, \cdots, t_{n}\right) & =z\left(x_{m}^{2}-y_{m}^{2}\right)
\end{align*}
$$

Example 1/2

Corollary

The following system of equations is partition regular over \mathbb{Z}.

$$
\begin{align*}
z(2 r+3 t) & =x_{1}^{2}-y_{1}^{2} \\
z(3 r+2 t) & =x_{2}^{2}-y_{2}^{2} \\
z \frac{r^{2}}{t} & =x_{3}^{2}-y_{3}^{2} \tag{10}\\
z \frac{t^{2}}{r} & =x_{4}^{2}-y_{4}^{2} \\
z \frac{5 r^{3}-7 t^{3}}{2 r^{2}+5 t^{2}} & =x_{5}^{2}-y_{5}^{2}
\end{align*}
$$

Example 2/2

Corollary

The following system of equations is partition regular over \mathbb{Z}.

$$
\begin{align*}
r^{3} & =z\left(x_{1}^{2}-y_{1}^{2}\right) \\
t^{3} & =z\left(x_{2}^{2}-y_{2}^{2}\right) \\
r^{3}+t^{3} & =z\left(x_{3}^{2}-y_{3}^{2}\right) \tag{11}\\
2 r^{3}-3 r^{2} t+7 r t^{2}-t^{3} & =z\left(x_{4}^{2}-y_{4}^{2}\right) \\
\left\lfloor 2^{\frac{t}{r}}\right\rfloor\left\lfloor\ln \left(\frac{r}{t}\right)\right\rfloor \frac{5 r^{4}+7 t^{4}}{9 r-17 t} & =z\left(x_{5}^{2}-y_{5}^{2}\right)
\end{align*}
$$

Future work $1 / 3$

Conjecture

Let R be an infinite integral domain and $A \subseteq R$. If A is multiplicatively syndetic, then $B:=\left\{x^{2}-y^{2} \mid x, y \in A\right\}$ is multiplicatively thickly syndetic.

Corollary

The following system of equations is (will be) partition regular over \mathbb{N}.

$$
\begin{align*}
z^{3} & =w\left(x_{1}^{2}-y_{1}^{2}\right) \\
w z & =x_{2}^{2}-y_{2}^{2} \tag{12}
\end{align*}
$$

In general, an affirmative answer to Conecture 11 would allow us to combine many of the previous P.R. systems of equations into even bigger P.R. systems of equations.

A cubic form generating mult. thick sets

Lemma

Let R be an infinite integral domain containing a solution ζ to $x^{2}+x+1=0$ and $A \subseteq R$. If A is 'A.P.'-rich, then
$B:=\left\{x^{3}+y^{3}+z^{3}-3 x y z \mid x, y, z \in A\right\}$ is multiplicatively thick.

Corollary

Let R be an infinite integral domain containing a solution ζ to $x^{2}+x+1=0$ and let K be its field of fractions. For any $c \in K \backslash\{0\}$, the equation

$$
\begin{equation*}
c=\frac{x_{1}^{3}+y_{1}^{3}+z_{1}^{3}-3 x_{1} y_{1} z_{1}}{x_{2}^{3}+y_{2}^{3}+z_{2}^{3}-3 x_{2} y_{2} z_{2}} \tag{13}
\end{equation*}
$$

is partition regular.
$0=x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x+\zeta y+\zeta^{2} z\right)\left(x+\zeta^{2} y+\zeta z\right)$ is nontrivially partition regular over $\mathbb{Z}[\zeta]$ but not \mathbb{Z}.

Second main theorem $1 / 4$

Theorem: Let R be an infinite integral domain containing a solution ζ to $x^{2}+x+1=0$ and let K be its field of fractions.
(i) For any $c_{0}, c_{1}, \cdots, c_{m} \in R \backslash\{0\}$, the system of equations below is partition regular over R, as it will contain a solution in any multiplicatively piecewise syndetic set A.

$$
\begin{align*}
\frac{c_{1}+c_{0}}{c_{1}}= & \frac{x^{3}+y_{1}^{3}+z_{1}^{3}-3 x y_{1} z_{1}}{u^{3}+w_{1}^{3}+v_{1}^{3}-3 y w_{1} v_{1}} \tag{14}\\
& \vdots \\
\frac{c_{m}+c_{0}}{c_{m}}= & \frac{x^{3}+y_{m}^{3}+z_{m}^{3}-3 x y_{m} z_{m}}{u^{3}+w_{m}^{3}+v_{m}^{3}-3 u w_{m} v_{m}}
\end{align*}
$$

Second main theorem $2 / 4$

(ii) For any $c_{1}, \cdots, c_{m} \in R \backslash\{0\}$, the system of equations below is partition regular over R, as it will contain a solution in any multiplicatively piecewise syndetic set A.

$$
\begin{align*}
c_{1} & =\frac{w}{z}\left(x_{1}^{3}+y_{1}^{3}+z_{1}^{3}-3 x_{1} y_{1} z_{1}\right) \\
& \vdots \tag{15}\\
c_{m} & =\frac{w}{z}\left(x_{m}^{3}+y_{m}^{3}+z_{m}^{3}-3 x_{m} y_{m} z_{m}\right)
\end{align*}
$$

(iii) For any distinct $c_{1}, c_{2} \in \mathbb{Z} \backslash\{0\}$, the system of equations below is not partition regular over \mathbb{Z}.

$$
\begin{align*}
& c_{1}=\frac{w_{1}}{z_{1}}\left(x^{3}+y^{3}+z^{3}-3 x y z\right) \tag{16}\\
& c_{2}=\frac{w_{2}}{z_{2}}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)
\end{align*}
$$

Second main theorem $3 / 4$

(iv) For any $c_{1}, \cdots, c_{m} \in R \backslash\{0\}$, the system of equations below is partition regular over R, as it will contain a solution in any multiplicatively piecewise syndetic set A.

$$
\begin{align*}
c_{1} & =\frac{x^{3}+y_{1}^{3}+z_{1}^{3}-3 x y_{1} z_{1}}{27 u v w_{1}} \\
& \vdots \tag{17}\\
c_{m} & =\frac{x^{3}+y_{m}^{3}+z_{m}^{3}-3 x y_{m} z_{m}}{27 u v w_{m}}
\end{align*}
$$

(v) For any distinct $c_{1}, c_{2} \in \mathbb{Z} \backslash\{0\}$, the system of equations below is not partition regular over \mathbb{Z}.

$$
\begin{align*}
c_{1} & =\frac{x^{3}+y^{3}+z^{3}-3 x y z}{u_{1} v_{1} w_{1}} \tag{18}\\
c_{2} & =\frac{x^{3}+y^{3}+z^{3}-3 x y z}{u_{2} v_{2} w_{2}}
\end{align*}
$$

Second main theorem $4 / 4$

(vi) Suppose that $f_{1}, \cdots, f_{m}: K^{n} \rightarrow K$ are homogeneous of degree 2. The system of equations below is partition regular over R, as it will contain a solution in any multiplicatively piecewise syndetic set A.

$$
\begin{align*}
z f_{1}\left(t_{1}, \cdots, t_{n}\right)= & x_{1}^{3}+y_{1}^{3}+z_{1}^{3}-3 x_{1} y_{1} z_{1} \tag{19}\\
& \vdots \\
z f_{m}\left(t_{1}, \cdots, t_{n}\right) & =x_{m}^{3}+y_{m}^{3}+z_{m}^{3}-3 x_{m} y_{m} z_{m}
\end{align*}
$$

(vii) And if $f_{1}, \cdots, f_{m}: K^{n} \rightarrow K$ are homogeneous of degree 4 , then the same is true of the following system of equations:

$$
\begin{align*}
f_{1}\left(t_{1}, \cdots, t_{n}\right) & =z\left(x_{1}^{3}+y_{1}^{3}+z_{1}^{3}-3 x_{1} y_{1} z_{1}\right) \\
& \vdots \tag{20}\\
f_{m}\left(t_{1}, \cdots, t_{n}\right) & =z\left(x_{m}^{3}+y_{m}^{3}+z_{m}^{3}-3 x_{m} y_{m} z_{m}\right)
\end{align*}
$$

Future work 2/3

Conjecture

Let R be an infinite integral domain containing a solution to $x^{2}+x+1=0$ and $A \subseteq R$. If A is multiplicatively syndetic, then $B:=\left\{x^{3}+y^{3}+z^{3}-3 x y z \mid x, y, z \in A\right\}$ is multiplicatively thickly syndetic.

Corollary

The following system of equations is (will be) partition regular over \mathbb{N}.

$$
\begin{align*}
t^{4} & =s\left(x_{1}^{3}+y_{1}^{3}+z_{1}^{3}-3 x_{1} y_{1} z_{1}\right) \\
s t^{2} & =x_{2}^{3}+y_{2}^{3}+z_{2}^{3}-3 x_{2} y_{2} z_{2} \tag{21}
\end{align*}
$$

In general, an affirmative answer to Conecture 15 would allow us to combine many of the previous P.R. systems of equations into even bigger P.R. systems of equations.

Third main theorem $1 / 3$

Theorem: Let R be an integral domain and let
$\mathbf{A}=\left(a_{i, j}\right)_{1 \leq i, j \leq n} \in M_{n \times n}(R)$ satisfy $\operatorname{det}(\mathbf{A}) \neq 0$ and $\sum_{j=1}^{n} a_{1, j}=0$.
Let

$$
\begin{equation*}
g_{\mathbf{A}}\left(x_{1}, \cdots, x_{n}\right)=\prod_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i, j} x_{i}\right) . \tag{22}
\end{equation*}
$$

(i) If $A \subseteq R$ if 'A.P.'-rich, then
$B:=\left\{g_{\mathrm{A}}\left(x_{1}, \cdots, x_{n}\right) \mid x_{1}, \cdots, x_{n} \in A\right\}$ is multiplicatively thick.

Third main theorem $2 / 3$

(ii) Suppose that $f_{1}, \cdots, f_{m}: R^{n} \rightarrow R$ are homogeneous of degree $n-1$. The system of equations below is partition regular, as it will contain a solution in any multiplicatively piecewise syndetic set A.

$$
\begin{align*}
z f_{1}\left(t_{1}, \cdots, t_{n}\right) & =g_{\mathbf{A}}\left(x_{1,1}, \cdots, x_{1, n}\right) \\
& \vdots \tag{23}\\
z f_{m}\left(t_{1}, \cdots, t_{n}\right) & =g_{\mathbf{A}}\left(x_{m, 1}, \cdots, x_{m, n}\right)
\end{align*}
$$

(iii) And if $f_{1}, \cdots, f_{m}: R^{n} \rightarrow R$ are homogeneous of degree $n+1$, then the same is true of the following system:

$$
\begin{align*}
f_{1}\left(t_{1}, \cdots, t_{n}\right) & = \\
& \vdots g_{\mathbf{A}}\left(x_{1,1}, \cdots, x_{1, n}\right) \tag{24}\\
& \vdots \\
f_{m}\left(t_{1}, \cdots, t_{n}\right) & =z g_{\mathbf{A}}\left(x_{m, 1}, \cdots, x_{m, n}\right)
\end{align*}
$$

Third main theorem 3/3

Theorem

Let $\mathbf{A}=\left(a_{i, j}\right)_{1 \leq i, j \leq n} \in M_{n \times n}(\mathbb{Z} \backslash\{0\})$ be such that for $1 \leq i \leq n$ and $I \subseteq[1, n]$, we have $\sum_{j \in I} a_{i, j} \neq 0$ unless $|I|<2$ or $a_{i, j}=0$ for some $j \in I$. For $\emptyset \neq I \subseteq[1, n]$ let $c_{I}=\prod_{i=1}^{n}\left(\sum_{j \in I} a_{i, j}\right)$. If
$c \in R \backslash\left\{c_{l}\right\}$, then

$$
\begin{equation*}
c t^{n+1}=z g_{\mathbf{A}}\left(x_{1}, \cdots, x_{n}\right) \tag{25}
\end{equation*}
$$

is not partition regular over \mathbb{N}.

Future work 3/3

Question

(i) For what $a, b, c, d \in \mathbb{Z} \backslash\{0\}$ is the equation

$$
\begin{equation*}
z^{3}=w(a x+b y)(c x+d y) \tag{26}
\end{equation*}
$$

partition regular over \mathbb{N} ?
(ii) In the previous theorem is the condition that $\sum_{j=1}^{n} a_{i, j}=0$ a necessary condition? How about the fact that \mathbf{A} has nonzero entries? Moreover, if A is multiplicatively syndetic, will B be multiplicatively thickly syndetic, or will that require additional assumptions of \mathbf{A} ?
[1] V. Bergelson.
Ergodic Ramsey theory—an update.
In Ergodic theory of \mathbf{Z}^{d} actions (Warwick, 1993-1994),
volume 228 of London Math. Soc. Lecture Note Ser., pages 1-61. Cambridge Univ. Press, Cambridge, 1996.
[2] V. Bergelson, J. H. Johnson, Jr., and J. Moreira.
New polynomial and multidimensional extensions of classical partition results.
J. Combin. Theory Ser. A, 147:119-154, 2017.
[3] R. Brauer.
Untersuchungen über die arithmetischen Eigenschaften von Gruppen linearer Substitutionen.
Math. Z., 28(1):677-696, 1928.
[4] S. Chow, S. Lindqvist, and S. Prendiville. Rado's criterion over squares and higher powers. J. Eur. Math. Soc. (JEMS), 23(6):1925-1997, 2021.
[5] P. Csikvári, K. Gyarmati, and A. Sárközy.
Density and Ramsey type results on algebraic equations with restricted solution sets.
Combinatorica, 32(4):425-449, 2012.
[6] M. Di Nasso and L. Luperi Baglini.
Ramsey properties of nonlinear Diophantine equations.
Adv. Math., 324:84-117, 2018.
[7] S. Farhangi and R. Magner.
On the partition regularity of $a x+b y=c w^{m} z^{n}$.
Integers, 2022 (to appear).
[8] J. Moreira.
Monochromatic sums and products in \mathbb{N}.
Ann. of Math. (2), 185(3):1069-1090, 2017.
[9] S. Prendiville.
Counting monochromatic solutions to diagonal diophantine equations.
Discrete Anal., pages Paper No. 14, 47, 2021.
[10] R. Rado.
Studien zur Kombinatorik.
Math. Z., 36(1):424-470, 1933.
[11] J. Sahasrabudhe.
Exponential patterns in arithmetic Ramsey theory.
Acta Arith., 182(1):13-42, 2018.
[12] I. Schur.
Uber die kongruenz $x^{m}+y^{m}=z^{m}(\bmod p)$. Jahresber. Dtsch. Math, 25:114-117, 1916.
[13] B. van der Waerden.
Beweis einer baudetschen vermutung. Nieuw Arch. Wiskd, 15:212-216, 1927.

