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Partition regularity

Definition

Let S be a set, n,m ∈ N and s0 ∈ S be arbitrary, and
f1, · · · , fm : Sn → S be functions. The system of equations

f1(s1, · · · , sn) = s0
...

fm(s1, · · · , sn) = s0

(1)

is partition regular (p.r.) if for any partition S =
⋃r

i=1 Ci , there
is some 1 ≤ i0 ≤ r for which Ci0 contais a solution to the system
of equations in (1).
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Positive results 1/2

The following systems of equations are partition regular over N.
1) x + y = z , Schur 1916 [12]
2) van der Waerden 1927 [13] (arithmetic progressions or A.P.s)

x1 − x2 = x2 − x3
...

xn−2 − xn−1 = xn−1 − xn

3) Brauer 1928 [3] (A.P.s and their common difference)

x1 − x2 = x0
...

xn−1 − xn = x0
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Positive results 2/2

4) Rado 1933 [10] classified which finite systems of linear
equations are p.r.
5) x − y = p(z) with p(z) ∈ zZ[z ], Bergelson 1996 [1] (page 53)
6) Bergelson, Moreira, and Johnson 2017 [2], for pi(x) ∈ xZ[x ]

x1 − x2 = p1(x0)
...

xn−1 − xn = pn−1(x0)

7) x2 − y 2 = z , Moreira 2017 [8]
8) z = xy , Sahasrabudhe 2018 [11]
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Negative results

The following systems of equations are not partition regular over N.
1) 2x + 3y = z , Rado 1933 [10]
2) Rado 1933 [10]

x + 3y = z1
x + 2y = 2z2

3) x + y = z2 (ignoring 2 + 2 = 22), Csikvári, Gyarmati, and
Sárközy 2012 [5]
4) x − 2y = z2, Di Nasso and Luperi Baglini 2018 [6]
5) x2 − 2y 2 = z , Di Nasso and Luperi Baglini 2018 [6]
6) x + y = w 3z2, F. and Magner 2022 [7]
7) 2x + 3y = wz2, F. and Magner 2022 [7]
8) F. and Magner 2022 [7]

x1 + 17y1 = w1z
100
1

9x2 + 18y2 = w2z
2
2
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Open problems

The partition regularity of the following systems of equations over
N is not known.
1) x2 + y 2 = z2 (VERY popular)
2) a(x2 − y 2) = bz2 + dw (important, cf. [9])
3) x3 + y 3 + z3 = w 3 (cf. [4])
4) x3 + y 3 + z3 − 3xyz = w 3

5) x4 + y 4 + z4 = w 4 (cf. [4])
6) (VERY popular, cf. [8])

w = xy
z = x + y

7) 2x − 8y = wz3 (cf. [7])
8) (cf. [7])

16x1 + 17y1 = w1z
8
1

33x2 − 17y2 = w2z
8
2
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Thick sets and syndetic sets

A Semigroup is a pair (S , ·) where · : S × S → S is an associative
operation. For our purposes, we will only focus on the semigroups
(N,+), (N, ·), (R ,+), and (R , ·), where R is the ring of integers of
some number field K := Q[α]. For s ∈ S and A ⊆ S we define
sA = {sa | a ∈ A} and s−1A = {a ∈ S | sa ∈ A}.

Definition

Let (S , ·) be a commutative semigroup and A ⊆ S . The set A is
thick if for any finite set F ⊆ S we have

⋂
f ∈F f

−1A ̸= ∅. The set
A is syndetic if there exists a finite set F ⊆ S such that⋃

f ∈F f
−1A = S .

The set A1 =
⋃∞

n=1[n2, n2 + n] is a thick set in (N,+), the set
A2 = 2N is a syndetic set in (N,+). For any (cn)∞n=1 ⊆ N, the set
A3 =

⋃∞
n=1{cnp

b1
1 · · · pbnn | 0 ≤ bi ≤ n ∀ 1 ≤ i ≤ n} is thick in

(N, ·). The set A4 = {n ∈ N | v2(n) ≡ 0 (mod 2)} is syndetic in
(N, ·). Exercise: The squares are not syndetic in (N, ·).
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Piecewise syndetic sets and thickly syndetic sets

Definition

Let (S , ·) be a commutative semigroup and A ⊆ S . The set A is
piecewise syndetic if A = B ∩ C for some thick set B and some
syndetic set C . The set A is thickly syndetic if A ∩ A′ ̸= ∅ for
any piecewise syndetic set A′.

Theorem

Let (S , ·) be a commutative semigroup and A ⊆ S .

(i) The set A is piecewise syndetic if and only if there exists a
finite set F ⊆ S for which

⋃
f ∈F f

−1A is thick.

(ii) The set A is thickly syndetic if and only if for any finite set
F ⊆ S the set

⋂
f ∈F f

−1A is syndetic.

Exercise: The set A of squarefree numbers is not a piecwise
syndetic set in (N,+), and Ac is a thickly syndetic set.
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Ramsey theoretical properties of large sets

Theorem

If (S , ·) is a commutative semigroup and A ⊆ S is piecewise
syndetic, then for any partition A =

⋃r
i=1 Ai , at least one of the Ai

is piecewise syndetic.

Theorem

Let (S , ·) be a commutative semigroup and suppose that F is a
translation invariant system of equations. (For example,
x + y = 2z over (N,+) or xy = z2 over (N, ·)) The following are
equivalent:

(i) F is partition regular over S .

(ii) For any pieceiwse syndetic set A ⊆ S , F has a solution
contained in A.

(iii) For any very strongly central set A (a special kind of syndetic
set) F has a solution in A.
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Difference of squares generate mult. thick sets

Lemma

Let R be an infinite integral domain and A ⊆ R . If A is ’A.P.’-rich
(which is implied by additive or multiplicative piecewise
syndeticity), then B := {x2 − y 2 | x , y ∈ A} is multiplicatively
thick.

Corollary

Let R be an infinite integral domain with field of fractions K . For
any c ∈ K \ {0}, the equation

c =
x2 − y 2

w 2 − z2
(2)

is partition regular.
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First main theorem 1/4

Theorem: Let R be an integral domain with field of fractions K
and n,m ∈ N arbitrary.

(i) For any c0, c1, · · · , cm ∈ R \ {0}, the system of equations
below is partition regular over R , as it will contain a solution
in any ’A.P.’-rich set A.

c1 + c0
c1

=
x2 − y 2

1

w 2 − z21
...

cm + c0
cm

=
x2 − y 2

m

w 2 − z2m

(3)
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First main theorem 2/4

(ii) For any c1, · · · , cm ∈ R \ {0}, the system of equations below
is partition regular over R , as it will contain a solution in any
multiplicatively piecewise syndetic set A.

c1 =
w

z
(x21 − y 2

1 )

...

cm =
w

z
(x2m − y 2

m)

(4)

(iii) For any distinct c1, c2 ∈ Z \ {0}, the system of equations
below is not partition regular over N.

c1 =
w1

z1
(x2 − y 2)

c2 =
w2

z2
(x2 − y 2)

(5)
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First main theorem 3/4

(iv) For any c1, · · · , cm ∈ R \ {0}, the system of equations below
is partition regular over R , as it will contain a solution in any
multiplicatively piecewise syndetic set A.

c1 =
x2 − y 2

1

4wz1
...

cm =
x2 − y 2

m

4wzm

(6)

(v) For any distinct c1, c2 ∈ Z \ {0}, the system of equations
below is not partition regular over N.

c1 =
x2 − y 2

w1z1

c2 =
x2 − y 2

w2z2

(7)
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First main theorem 4/4

(vi) Suppose that f1, · · · , fm : K n → K are homogeneous of
degree 1. The system of equations below is partition regular
over R , as it will contain a solution in any multiplicatively
piecewise syndetic set A.

zf1(t1, · · · , tn) = x21 − y 2
1

...
zfm(t1, · · · , tn) = x2m − y 2

m

(8)

(vii) And if f1, · · · , fm : K n → K are homogeneous of degree 3,
then the same is true of the following system of equations:

f1(t1, · · · , tn) = z(x21 − y 2
1 )

...
fm(t1, · · · , tn) = z(x2m − y 2

m)

(9)
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Example 1/2

Corollary

The following system of equations is partition regular over Z.

z(2r + 3t) = x21 − y 2
1

z(3r + 2t) = x22 − y 2
2

z
r 2

t
= x23 − y 2

3

z
t2

r
= x24 − y 2

4

z
5r 3 − 7t3

2r 2 + 5t2
= x25 − y 2

5

(10)
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Example 2/2

Corollary

The following system of equations is partition regular over Z.

r 3 = z(x21 − y 2
1 )

t3 = z(x22 − y 2
2 )

r 3 + t3 = z(x23 − y 2
3 )

2r 3 − 3r 2t + 7rt2 − t3 = z(x24 − y 2
4 )⌊

2
t
r

⌋ ⌊
ln
( r
t

)⌋ 5r 4 + 7t4

9r − 17t
= z(x25 − y 2

5 )

(11)
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Future work 1/3

Conjecture

Let R be an infinite integral domain and A ⊆ R . If A is
multiplicatively syndetic, then B := {x2 − y 2 | x , y ∈ A} is
multiplicatively thickly syndetic.

Corollary

The following system of equations is (will be) partition regular over
N.

z3 = w(x21 − y 2
1 )

wz = x22 − y 2
2

(12)

In general, an affirmative answer to Conecture 11 would allow us
to combine many of the previous P.R. systems of equations into
even bigger P.R. systems of equations.
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A cubic form generating mult. thick sets

Lemma

Let R be an infinite integral domain containing a solution ζ to
x2 + x + 1 = 0 and A ⊆ R . If A is ’A.P.’-rich, then
B := {x3 + y 3 + z3 − 3xyz | x , y , z ∈ A} is multiplicatively thick.

Corollary

Let R be an infinite integral domain containing a solution ζ to
x2 + x + 1 = 0 and let K be its field of fractions. For any
c ∈ K \ {0}, the equation

c =
x31 + y 3

1 + z31 − 3x1y1z1
x32 + y 3

2 + z32 − 3x2y2z2
(13)

is partition regular.

0 = x3 + y 3 + z3− 3xyz = (x + y + z)(x + ζy + ζ2z)(x + ζ2y + ζz)
is nontrivially partition regular over Z[ζ] but not Z.
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Second main theorem 1/4

Theorem: Let R be an infinite integral domain containing a
solution ζ to x2 + x + 1 = 0 and let K be its field of fractions.

(i) For any c0, c1, · · · , cm ∈ R \ {0}, the system of equations
below is partition regular over R , as it will contain a solution
in any multiplicatively piecewise syndetic set A.

c1 + c0
c1

=
x3 + y 3

1 + z31 − 3xy1z1
u3 + w 3

1 + v 3
1 − 3yw1v1

...
cm + c0

cm
=

x3 + y 3
m + z3m − 3xymzm

u3 + w 3
m + v 3

m − 3uwmvm

(14)
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Second main theorem 2/4

(ii) For any c1, · · · , cm ∈ R \ {0}, the system of equations below
is partition regular over R , as it will contain a solution in any
multiplicatively piecewise syndetic set A.

c1 =
w

z
(x31 + y 3

1 + z31 − 3x1y1z1)

...

cm =
w

z
(x3m + y 3

m + z3m − 3xmymzm)

(15)

(iii) For any distinct c1, c2 ∈ Z \ {0}, the system of equations
below is not partition regular over Z.

c1 =
w1

z1
(x3 + y 3 + z3 − 3xyz)

c2 =
w2

z2
(x3 + y 3 + z3 − 3xyz)

(16)
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Second main theorem 3/4

(iv) For any c1, · · · , cm ∈ R \ {0}, the system of equations below
is partition regular over R , as it will contain a solution in any
multiplicatively piecewise syndetic set A.

c1 =
x3 + y 3

1 + z31 − 3xy1z1
27uvw1

...

cm =
x3 + y 3

m + z3m − 3xymzm
27uvwm

(17)

(v) For any distinct c1, c2 ∈ Z \ {0}, the system of equations
below is not partition regular over Z.

c1 =
x3 + y 3 + z3 − 3xyz

u1v1w1

c2 =
x3 + y 3 + z3 − 3xyz

u2v2w2

(18)
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Second main theorem 4/4

(vi) Suppose that f1, · · · , fm : K n → K are homogeneous of
degree 2. The system of equations below is partition regular
over R , as it will contain a solution in any multiplicatively
piecewise syndetic set A.

zf1(t1, · · · , tn) = x31 + y 3
1 + z31 − 3x1y1z1

...
zfm(t1, · · · , tn) = x3m + y 3

m + z3m − 3xmymzm

(19)

(vii) And if f1, · · · , fm : K n → K are homogeneous of degree 4,
then the same is true of the following system of equations:

f1(t1, · · · , tn) = z(x31 + y 3
1 + z31 − 3x1y1z1)

...
fm(t1, · · · , tn) = z(x3m + y 3

m + z3m − 3xmymzm)

(20)
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Future work 2/3

Conjecture

Let R be an infinite integral domain containing a solution to
x2 + x + 1 = 0 and A ⊆ R . If A is multiplicatively syndetic, then
B := {x3 + y 3 + z3 − 3xyz | x , y , z ∈ A} is multiplicatively thickly
syndetic.

Corollary

The following system of equations is (will be) partition regular over
N.

t4 = s(x31 + y 3
1 + z31 − 3x1y1z1)

st2 = x32 + y 3
2 + z32 − 3x2y2z2

(21)

In general, an affirmative answer to Conecture 15 would allow us
to combine many of the previous P.R. systems of equations into
even bigger P.R. systems of equations.
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Third main theorem 1/3

Theorem: Let R be an integral domain and let
A = (ai ,j)1≤i ,j≤n ∈ Mn×n(R) satisfy det(A) ̸= 0 and

∑n
j=1 a1,j = 0.

Let

gA(x1, · · · , xn) =
n∏

i=1

(
n∑

j=1

ai ,jxi

)
. (22)

(i) If A ⊆ R if ’A.P.’-rich, then
B := {gA(x1, · · · , xn) | x1, · · · , xn ∈ A} is multiplicatively
thick.
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Third main theorem 2/3

(ii) Suppose that f1, · · · , fm : Rn → R are homogeneous of degree
n − 1. The system of equations below is partition regular, as
it will contain a solution in any multiplicatively piecewise
syndetic set A.

zf1(t1, · · · , tn) = gA(x1,1, · · · , x1,n)
...

zfm(t1, · · · , tn) = gA(xm,1, · · · , xm,n)

(23)

(iii) And if f1, · · · , fm : Rn → R are homogeneous of degree n + 1,
then the same is true of the following system:

f1(t1, · · · , tn) = zgA(x1,1, · · · , x1,n)
...

fm(t1, · · · , tn) = zgA(xm,1, · · · , xm,n)

(24)
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Third main theorem 3/3

Theorem

Let A = (ai ,j)1≤i ,j≤n ∈ Mn×n(Z \ {0}) be such that for 1 ≤ i ≤ n
and I ⊆ [1, n], we have

∑
j∈I ai ,j ̸= 0 unless |I | < 2 or ai ,j = 0 for

some j ∈ I . For ∅ ≠ I ⊆ [1, n] let cI =
∏n

i=1(
∑

j∈I ai ,j). If
c ∈ R \ {cI}, then

ctn+1 = zgA(x1, · · · , xn) (25)

is not partition regular over N.
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Future work 3/3

Question

(i) For what a, b, c , d ∈ Z \ {0} is the equation

z3 = w(ax + by)(cx + dy) (26)

partition regular over N?
(ii) In the previous theorem is the condition that

∑n
j=1 ai ,j = 0 a

necessary condition? How about the fact that A has nonzero
entries? Moreover, if A is multiplicatively syndetic, will B be
multiplicatively thickly syndetic, or will that require additional
assumptions of A?
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