DISCRETE HARMONIC ANALYSIS AND APPLICATIONS TO ERGODIC THEORY

Mariusz Mirek

Uniwersytet Wrocławski m.a.mirek@gmail.com

Abstract

Given $d, k \in \mathbb{N}$, let P_j be an integer-valued polynomial of k variables for every $1 \leq j \leq d$. Suppose that (X, \mathcal{B}, μ) is a σ -finite measure space with a family of invertible commuting and measure preserving transformations T_1, T_2, \ldots, T_d on X. For every $N \in \mathbb{N}$ and $x \in X$ we define the ergodic Radon averaging operators by setting

$$A_N f(x) = \frac{1}{N^k} \sum_{m \in [1,N]^k \cap \mathbb{Z}^k} f(T_1^{P_1(m)} \circ T_2^{P_2(m)} \circ \ldots \circ T_d^{P_d(m)} x).$$

We will show that for every p > 1 and for every function $f \in L^p(X,\mu)$, there is a function $f^* \in L^p(X,\mu)$ such that

$$\lim_{N \to \infty} A_N f(x) = f^*(x)$$

 μ -almost everywhere on X. We will achieve this by considering r-variational estimates.