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Abstract
We investigate the problem of efficient computation of a
partition of a random geometric graph (RGG) into a limited
number of densely packed bipartite subgraphs. The study
focuses on the collection of subgraphs each individually
having similar size and structure and the union employing
most (e.g. over 85%) of the vertices. The residual vertices
we seek to minimize are attributed to the inherent variations
in densities of the randomly placed vertices and to any
shortcomings of our greedy algorithms.

Random geometric graphs have been extensively em-
ployed in recent times to model the deployment of numerous
instances of wireless sensor networks (WSN’s). The proper-
ties investigated in our selected bipartite backbone grids are
those deemed most relevant for applications to the founda-
tions of this widely growing field.

A companion goal of our proposal is to develop metrics
for documenting the quality of the WSN backbone grids.
The metrics must be meaningful for WSN application while
also being efficiently computable for highly scalable compu-
tation, e.g. WSN’s with 100’s of thousands of vertices and
millions of edges in the resulting RGG.

We consider distributions over a segment of the plane

and over the surface of the sphere to model sensor distribu-

tions both in limited regions and all around the globe.

1 Introduction.

Wireless Sensor Networks (WSN’s) are becoming more
and more prevalent nowadays as an emerging technol-
ogy with various military and civilian applications like
habitat and ecosystem monitoring, seismic monitoring,
civil structural health monitoring, groundwater contam-
ination monitoring, outer space investigations[4] and so
on. WSN’s are made up of autonomous electronic sen-
sors distributed across a region where the sensors com-
municate with each other wirelessly[9, 5, 15]. The abil-
ity to quickly throw together a network of sensors to
monitor physical conditions (like sound, temperature,
humidity and so on) over a region without the need for a
physical infrastructure (beyond the gateway nodes used
as a physical interface to the network) makes WSN’s
attractive for quick and cheap implementation. Each
sensor has a limited wireless communication distance to
its neighbors, which suggests using an RGG concept in
computer science to model WSN’s by placing a random
set of points either in a planar region or over the sphere
is reasonable and practical. The general goal of such
a model is to determine disjoint subsets of the sensors
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that each can serve as a backbone for monitoring the
whole region[13, 8].

The challenge for WSN deployment is: given numer-
ous randomly placed wireless sensors, how can we orga-
nize them into multiple communicating network grids
(backbones) each covering the region[11, 10, 12, 7]?

2 Problem Specification.

Generally, the deployment (geometry) of backbones in
WSN’s can be various according to different application
requirements. One approach is to build a single clus-
tered backbone with minimal cardinality where each
sensor should connect to a backbone vertex (sensor)
where the backbone sensors are deployed with minimal
overlap space (like hexagonal (honeycomb) lattice[14]).
Another approach is to build several disjoint dominating
backbones with sensors deployed with multi-coverage.
Figure 1 provides two idealized manual placement grids
(bipartite planar hexagonal lattice and bipartite planar
cartesian lattice) that can be offset and replicated k
times to form k backbones using all vertices with face
sizes six and four respectively. Bipartite graph contains
two independent sets where no two vertices of which
are adjacent. Deployment with bipartite feature has the
ability to send two single channels routing the message
in the backbone without interference each other.

(a) Hexagonal Lattice Grid (b) Cartesian Lattice Grid

Figure 1: Two lattice grids with face size six and four

We prefer the multi grid approach offering better
scalability and versatility. Energy savings and variable
time to failure of sensor network modes suggest redun-
dant networks with higher connectivity than tree like
parts is desirable. With several disjoint backbones, we
can rotate them (duty cycle) to ensure full coverage
and enlarge the whole network lifetime. Requiring k-
coverage rather than 1-coverage will increase accuracy of



tracking, improve robustness or fault-tolerance and bet-
ter performance in intruder detection application[12].
The honeycomb lattice grid in Figure 1 (a) is a 6-
coverage deployment and the Cartesian lattice grid is a
4-coverage deployment. Figure 2 shows a combination
of regular degree three and four (bi-regular 3,4) lattice
grids which has k-coverage (4 ≤ k ≤ 7, Figure 3 shows
the individual coverage of each independent set of the
bi-regular deployment) and provides a more compact
deployment with a better energy saving ability because
of shorter average distance (requiring less transmission
power) between many neighbor sensor pairs. Our ques-

Figure 2: Bi-regular 3,4 Lattice Grid

(a) Blue independent set (b) Red independent set

Figure 3: Coverages of bi-regular 3,4 independent sets

tion becomes if points are distributed randomly, can we
expect to find possibly distorted disjoint 2-connected
grids with similar domination and patterns of face size
primarily between four and six (like Figure 2 shows the
bi-regular 3,4 lattice)?

Let a random geometric graph (RGG) denote a
graph G(N, r) with vertex set formed by choosing n
points in a uniform random manner on the unit square,
and introducing an edge between every vertex pair
whose Euclidian distance is less than r. Our problem is
to partition vertices into k disjoint sets {V1, V2, ..., Vk}
whose induced subgraphs 〈V1〉, 〈V2〉, ..., 〈Vk−1〉 are con-
nected bipartite subgraphs with each part an indepen-
dent set that dominates all or nearly all N vertices
of G(N, r). Let V1, V2, ..., Vk−1 be a partition of a
majority of the vertices of G(N, r) into disjoint sets

where each set Vi (for 1 ≤ i ≤ k − 1) induces a con-
nected bipartite subgraph of G(N, r). Specifically, we
shall term V1, V2, ..., Vk−1 a bipartite component parti-
tion BCP (δ, ε) of the random geometric graph G(N, r)
if the union of the vertex sets Vi comprise (1 − δ)N
of the vertices and if the induced subgraphs 〈Vi〉 (for
1 ≤ i ≤ k − 1) on average each dominate (1 − ε)N
of the vertices. Vk is the residual vertex set not em-
ployed in the bipartite backbone partition. Our goal is
to determine such partitions BCP (δ, ε) for δ and ε suit-
ably small, practically for example, with δ ≈ 1/k and
ε < 0.01.

3 Design Considerations.

Regardless of the radio technology used, from the
topology point of view, at any instant in time a WSN
can be represented as a graph with a set of vertices
consisting of the sensors of the network and a set of
edges consisting of the links between the sensors. We use
a random geometric graph (RGG) concept in computer
science to model WSNs by placing n vertices uniformly
at random in a region (e.g. unit square) and connecting
two vertices if their Euclidian distance is at most r [6].

3.1 Topology. We consider RGG’s on three surfaces:
the unit square, unit disk and unit sphere. The
unit square allows visualizing scaling by considering
4 squares as four times the number of vertices with
one half the value of the distance bound r yielding
essentially the same number of backbone with only half
the boundary bias. The unit disk removes the four
corner small degree bias. The unit sphere removes the
boundary bias and allows an easy count of the number
of faces without a boundary face bias. The sphere also
allows for modeling sensor networks spanning the globe.

3.2 Vertex distribution. We consider uniformly
random distribution of vertices over the surfaces. This
provides a sufficient first approximation to sensor de-
ployments subject to geographical constraints (e.g. con-
sider actual cell tower location).

For different surfaces and sensor densities, we prefer
to specify the parameters N and “average degree” of the
RGG, letting r be determined by these specifications.
Figure 4 shows sample graphs of 6400 vertex RGG’s
on our three surfaces with r values computed to yield
expected average degrees of 100 in each case. Specifying
the average degree provides convenient density parity
over alternative surface for comparison of the number
and quality of bipartite backbone in the partition.

Our backbone partition is topologically determined
from the graph, we thus avoid further geographical
(geometric) variations other than those due to the



G(6400, 0.071)

Unit square

G(6400, 0.126)

Unit disk

G(6400, 0.251)

Unit sphere

Figure 4: Random Geometric Topologies

typical boundary regions of the unit square and unit
disk.

3.3 Edge generation for the RGG’s We employ a
cell method for determining the edges of the RGG. This
method requires only a small expected number of vertex
pair distance computations per edge determination.
This linear time generation (“Cell method” algorithm)
of sample RGG’s allows scalability to very large number
of vertices in our studies. Let G(N, r) be the RGG
shows in Figure 5 providing a cell method example
on unit square region: Divide the region into r by r
cells, only vertices located in the r radius circle are
connected to the vertices in the blue cell, so with
sequential operation, for each vertex in blue cell, you
only need check all vertices in red cells to determine its
neighbors. Let E be the number of edges of this RGG,

Figure 5: Cell method Example

then calculating the average degree in two different way,
we will get 2E

N ≈ Nπr2. With the number of pairs
checked each time in cell method which is 5Nr2, we

observe:

5Nr2 < (2π)Nr2 ≈ 4E

N
< 4E = O(E)(3.1)

The equation (3.1) shows the linear time nature of our
cell method.

4 Algorithms.

We introduce an efficient (linear time) algorithm includ-
ing two-phase sequential coloring procedure (smallest-
last coloring and adaptive coloring) employing only the
topology (not the geometry) of G(N, r) for partitioning
vertices of the RGG into k disjoint sets {V1, V2, ..., Vk}
whose induced subgraphs 〈V1〉, 〈V2〉, ..., 〈Vk−1〉 are con-
nected densely packed bipartite subgraphs with each
part an independent set that dominates all or nearly
all N vertices of G(N, r).

A sequential coloring algorithm of a graph is an
algorithm that operates in the following two stages:
(1) Determine a sequence S of ordering vertices in the
graph. (2) Greedy-Color the graph in the sequence of S.
The Greedy-Color procedure assigns to a given vertex n
in the sequence S the smallest color value that was not
assigned to any previously colored neighbors of n.

4.1 Smallest-last coloring. Smallest-last coloring
uses greedy way to color the graph according to a
“Smallest-last Ordering”[1] sequence. To explain it in
detail: sequentially delete the minimum degree vertex in
the remaining graph and place on a stack until the graph
is empty, then sequentially pop the stack and greedily
color each vertex with the smallest color value not on
a previously colored adjacent vertex. The algorithm
pseudocode could be written as follow: Smallest-last

Algorithm 1 SmallestLastColoring

Input: Graph G(V,E)
Output: Vertex Ordering S

S ← ∅
while V \S 6= ∅ do

append to S the vertex with smallest degree
in the subgraph induced by V n S

end while
Greedy-Color G\S in inverse oder of S

Ordering has proven to be efficient (in linear time) on
several classes of graphs compared to several different
sequential methods like Largest First, Lexicographic
and Random[3, 1] and results in a sequence with vertices
of fairly stable number of neighbors to be colored which
yields a large complete subgraph generally close or
equal to the chromatic number. This is a desirable
feature for getting several dominant independent sets



with fair same sizes. Figure 6 shows the plots of original
degree (in green color at top), average degree (in black
color at middle) and degree when deleted (in blue color
at bottom) during smallest-last ordering process for
RGG of unit square G(20000, 0.040) with average degree
97.65. Figure 7 shows color size plot which is a plot of

Figure 6: Degree Vertex Plots of Smallest-last Ordering

the number of vertices in each color set after greedy
coloring process complete on this RGG. We can see the
initial several color sets each having fairly same amount
of vertices, in this case, the initial 19 (from color # 0
to color #18) color sets covers about 49.37% vertices of
the whole graph.

Figure 7: Color Size Plot of Smallest-last Coloring

4.2 Adaptive coloring. With the observation of
initial color sets having fairly same size of dominant
independent sets after smallest-last coloring procedure,
we select the intial k color sets covering around 50%
vertices of the orignal RGG as “primary independent
sets” or “primary sets”. In order to make full use of the
residual vertices, we re-color them with colors paired to
maximize adjacency with former cooresponding primary
set. The generated new k-color adaptive sets are

called “relay independent sets” or “relay sets”, then the
residual vertices for recoloring can be termed as “relay
candidates”. For adaptively recolor the relay candidates
to paired with primary sets with maximize adjacency,
we have to select and order relay candidates according to
the amount of neighbors which belongs to primary color
sets. Therefore, the adaptive coloring is also a special
sequential coloring algorithm. With simple geometric
provement we can know the maximum number of one
color neighbors of a vertex can only be five like Figure
8 (b) shows (assuming we have 6 one color neighbors
which will form a honeycomb structure and causes the
one color neighbors connecting together then violated
the one color independent set constraint). We can
create 4 relay degree lists (From degree 2 to degree 5
since each vertex belongs to relay sets should connect at
least 2 primary set vertices to form a robust connected
backbone). For each vertex in relay candidates, we push
them into the relay list according to their maximum
one color neighbor degree like Figure 8 (a) shows.
Then we can use a similar degree list coloring strategy
in smallest-last coloring[1] to color the relay list and
obviously, it is also linear time O(|V | + |E|) with V is
the number of vertices in the graph and E is the number
of edges in the graph. The algorithm pseudocode could

(a) Relay Degree Lists
(b) Maximum One-color
Neighbors

Figure 8: Relay Degree Lists and Maximum Neighbors

be written as follow: Figure 9 shows Color-size plot
after adaptive coloring procedure. In the figure, you
can see both smallest-last coloring color size plot and
the second part adaptive coloring color size plot. It
looks like you selected partial residual vertices and let
them “jump-up” in the plot to pair with each primary
set and these relay sets are also fairly same size with
a little gap in the amount of primary sets. And now
we may recall our bi-regular 3,4 lattice grid which has
the similar feature that one independent set is more
density while the other independent set is a little sparser
compared to the density set in vertex amount and both
independent sets are triangular lattices.

To check whether our generated backbones are
close to the bi-regular lattice, we add gabriel rule
to its primary and relay sets and after massive test



Algorithm 2 AdaptiveColoring

Input: Graph G(V,E) and relay lists L[i](2 ≤ i ≤ 5)
Output: Relay colors allocated to vertices in Vr (relay
candidates set)

for i = 5 to 2 do

while !L[i].isEmpty() do
Try to assign a relay color paired with its primary
neighbor color
if the relay color is aleady assigned to one of its
relay neighbour vetices then

continue
else

assign this relay color
end if

end while
end for

Figure 9: Color Size Plot of Adaptive Coloring

experiments, we found the gabriel graph has average
face size close to 3 which means they are close to
all triangular lattice just the relay set are sparser in
amount. Then we can say our generated backbones are
close to the manual bi-regular placement. Figure 10
shows the grabriel rules added to one primary and one
relay independent set example generated from the three
RGG’s of Figure 4 with three topologies. You can see
in unit sphere model, the average face sizes on both
primary set and relay set are more close to 3 compared
to other 2 topologies, the reason it other 2 topologies
are all on a plane which a large boundary faze size bias
effect.

5 Conclusion and results.

We investigate the problem of existence and a new
method to partition a random geometric graph into k
disjoint subgraphs satisfying the following conditions.

All but one of the subgraphs are connected (1 −

G(6400, 0.071)

Primary Set

Face Size: 3.27

G(6400, 0.126)

Primary Set

Face Size: 3.29

G(6400, 0.251)

Primary Set

Face Size: 3.12

Relay Set

Face Size: 3.54

Relay Set

Face Size: 3.46

Relay Set

Face Size: 3.30

Figure 10: Average Face Sizes of Primary and Relay
Sets with Grabriel Rules

G(20000, 0.040)

Max. Degree: 133

Min. Degree: 29

Avg. Degree: 97.79

First Backbone

Vertices: 899

Avg. Degree: 2.92

Dominates: 100.0%

Middle Backbone

Vertices: 885

Avg. Degree: 2.92

Dominates: 99.99%

Last Backbone

Vertices: 899

Avg. Degree: 2.92

Dominates: 100.0%

Figure 11: Sample Screenshot results of Unit Square



G(20000, 0.071)

Max. Degree: 142

Min. Degree: 33

Avg. Degree: 98.02

First Backbone

Vertices: 871

Avg. Degree: 2.83

Dominates: 100.0%

Middle Backbone

Vertices: 905

Avg. Degree: 2.92

Dominates: 100.0%

Last Backbone

Vertices: 850

Avg. Degree: 2.75

Dominates: 99.99%

Figure 12: Sample Screenshot results of Unit Disk

G(20000, 0.142)

Max. Degree: 142

Min. Degree: 68

Avg. Degree: 100.97

First Backbone

Vertices: 815

Avg. Degree: 2.58

Dominates: 100.0%

Middle Backbone

Vertices: 824

Avg. Degree: 2.69

Dominates: 99.98%

Last Backbone

Vertices: 757

Avg. Degree: 2.45

Dominates: 99.60%

Figure 13: Sample Screenshot results of Unit Sphere

ε) dominant bipartite (planar) subgraphs of similar
size and structure termed “backbones”, the other of
comparably small size composed of the “noise” in the
random distribution. We implemented a 3D tool for

generating the testbed benchmarks and are surprised at
discovering and verified that such backbone partitions
exist by employing relatively few dense backbones with
little loss to random distribution noise is of interest to
the rapidly growing field of wireless sensor networks.
We used a two-phase sequential coloring algorithm with
combining an old smallest-last coloring alogrithm with
a new adaptive coloring algorithm to reach our goal.
From Figure 11 to Figure 13 and Table 1 to Table 3
are some example screenshots of our test benchmarks of
RGG of 20000 vertices with average degree around 100
and some test data tables of RGG of average degree
around 80.
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