Fractional perfect matchings in hypergraphs (All I can remember about it while having jet lag)

Andrzej Ruciński A. Mickiewicz University, Poznań, Poland and Emory University, Atlanta

Abstract

A perfect matching in a k-uniform hypergraph H = (V, E) on n vertices is a set of n/k disjoint edges of H, while a fractional perfect matching in H is a function $w : E \to [0, 1]$ such that for each $v \in V$ we have $\sum_{e \ni v} w(e) = 1$. Given $n \ge 3$ and $3 \le k \le n$, let m be the smallest integer such that whenever the minimum vertex degree in H satisfies $\delta(H) \ge m$ then H contains a perfect matching, and let m^* be defined analogously with respect to fractional perfect matchings. Clearly, $m^* \le m$.

We prove that for large $n, m \sim m^*$, and suggest an approach to determine m^* , and consequently m, utilizing the Farkas Lemma. This is a joint work with Vojta Rödl.