Title: Ramsey goodness of bounded degree trees in random graphs.

Abstract

For a graph G, we write that $G \rightarrow\left(K_{r+1}, \mathcal{T}(n, D)\right)$ if every blue-red edgecoloring of G contains a blue K_{r+1} or a red copy of each tree with n edges and maximum degree at most D. In 1977, Chvátal proved that, for every integers $r, n, D, K_{N} \rightarrow\left(K_{r+1}, \mathcal{T}(n, D)\right.$ if and only if $N \geq r n+1$. In this work, we extend this result of Chvátal to the context of random graphs. More precisely, we show that there exists a constant $C>0$ such that if $N \geq r n+C / p$, then with high probability $$
G(N, p) \rightarrow\left(K_{r+1}, \mathcal{T}(n, D)\right)
$$ for any $p \geq C N^{-2 /(r+2)}$. The bound on N is best possible up to the value of C.

Joint work with Matias Pavez-Signé and Luiz Moreira.

