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Partition regularity

Definition

Let R be an integral domain, let S ⊆ R , let n,m ∈ N and
p1, · · · , pm : R[x1, · · · , xn be arbitrary. The system of equations

p1(x1, · · · , xn) = 0
...

pm(x1, · · · , xn) = 0

(1)

is ℓ-partition regular (p.r.) over S if for any partition
S =

⋃ℓ
i=1 Ci , there is some 1 ≤ i0 ≤ ℓ for which Ci0 contais a

solution to the system of equations in (1). The system of equations
is partition regular if it is ℓ-partition regular for all ℓ ∈ N.
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Positive results 1/2

The following systems of equations are partition regular over N.
1) x + y = z , Schur 1916 [23]
2) van der Waerden 1927 [26] (arithmetic progressions or A.P.s)

x1 − x2 = x2 − x3
...

xn−2 − xn−1 = xn−1 − xn, or equivalently,

n−2∑
i=1

(xi+2 − 2xi+1 + xi)
2 = 0.

3) Brauer 1928 [5] (A.P.s and their common difference)

x1 − x2 = x0
...

xn−1 − xn = x0
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Positive results 2/2

4) Rado 1933 [21] classified which finite systems of linear
equations are p.r.
5) x − y = p(z) with p(z) ∈ zZ[z ], Bergelson 1996 [1, page 53]
6) Bergelson, Moreira, and Johnson 2017 [3], for pi(x) ∈ xZ[x ]

x1 − x2 = p1(x0)
...

xn−1 − xn = pn−1(x0)

7) x2 − y 2 = z , Moreira 2017 [18]
8) z = xy , Sahasrabudhe 2018 [22]
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Negative results

The following systems of equations are not partition regular over N.
1) 2x + 3y = z , Rado 1933 [21]
2) Rado 1933 [21]

x + 3y = z1
x + 2y = 2z2

3) x + y = z2 (ignoring 2 + 2 = 22), Csikvári, Gyarmati, and
Sárközy 2012 [8] (see also [15])
4) x − 2y = z2, Di Nasso and Luperi Baglini 2018 [11]
5) x2 − 2y 2 = z , Di Nasso and Luperi Baglini 2018 [11]
6) x + y = w 3z2, F. and Magner 2022 [12]
7) 2x + 3y = wz2, F. and Magner 2022 [12]
8) F. and Magner 2022 [12]

x1 + 17y1 = w1z
100
1

9x2 + 18y2 = w2z
2
2
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Open problems

The partition regularity of the following systems of equations over
N is not known.
1) x2 + y 2 = z2 (VERY popular)
2) a(x2 − y 2) = bz2 + dw (important, cf. [20])
3) x3 + y 3 + z3 = w 3 (cf. [7])
4) x3 + y 3 + z3 − 3xyz = w 3

5) x4 + y 4 + z4 = w 4 (cf. [7])
6) (VERY popular, cf. [18])

w = xy
z = x + y

7) 2x − 8y = wz3 (cf. [12])
8) (cf. [12])

16x1 + 17y1 = w1z
8
1

33x2 − 17y2 = w2z
8
2
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First main result (a special case)

Theorem (F., Jackson, Mance, 2024+)

1 Let us assume that Hilbert’s 10th problem over Q is
undecidable. There is no computable condition (computer
program) to determine whether or not a given polynomial
equation is partition regular over N.

2 Suppose that R = Fp for some prime p, or that R = R ′[t]
where R ′ is an integral domain. Then there is no computable
condition to determine whether or not a given polynomial
equation is partition regular over R \ {0}.
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What is computability and decidability?

Suppose that someone asks you whether or not the equations
x2 − 5x + 6 = 0 has a root in Z. We can enumerate the elements
of Z, and plug them into the equation one by one until we see that
2 and 3 yield solutions. However, if someone asks you (or maybe a
non-mathematician) whether or not the equation x2 − 5x + 7 = 0
has a root in Z, then the previous method will not work, because it
will never terminate. Generally speaking, it is not possible to
determine whether or not there exists an element in an infinite
set that satisfies a specific property. We can only create a
finite/computable procedure to solve such questions in the
special cases that the question can be simplified (in a logical
sense). In the previous example, the simplification is the quadratic
formula. This is a simplification since it lets us avoid checking
every member of an infinite set. A problem is decidable if there is
a computable procedure to solve it.

Sohail Farhangi Decidability and logic Decidability in Ramsey theory 9



Hilbert’s 10th problem (HTP)

Theorem (Matiyasevič, 1971)

There does not exist a computable procedure for determining
whether or not a given polynomial p ∈ Z[x1, · · · , xn] has a root in
Z.

This provides a negative answer to the 10th of the 23 problems of
David Hilbert from the 1900 International Congress of Math. See
[9] for an exposition of the proof of this result, as well as a
discussion of the history.
Open Problem: Does there exist a computable procedure for
determining whether or not a given polynomial p ∈ Z[x1, · · · , xn]
has a root in Q?
The latter problem is referred to as Hilbert’s 10th problem over Q.
It is generally believed that there does not exist such a computable
procedure.
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Variations of Hilbert’s 10th problem

Given a computable integral domain R , we let HTP(R) refer to
the following statement:
HTP(R): There does not exist a computable procedure to
determine if a given p ∈ R[x1, · · · , xn] has a root in R .
The statement HTP(R) can be true, or false depending on the
integral domain R .

Theorem ([27, 19, 10])

Suppose that R = Fp for some prime p, R = Z, or that R = R ′[t]
for some integral domain R ′.
(i) HTP(R) is true.
(ii) There does not exist a computable procedure for determining

whether or not a given polynomial p ∈ R[x1, · · · , xn] has an
integer root (z1, · · · , zn) ∈ Rn with zi ̸= zj when i ̸= j .
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Reducing partition regularity to HTP

Lemma (cf. Krawczyk,Byszewski, 2021 [6])

Let R be an integral domain with field of fractions K. For any
m ∈ N and any k1, · · · , km ∈ K, the system of equations

z3i−2 − z3i−1

z3i
= ki for all 1 ≤ i ≤ m, (2)

is partition regular over R \ {0}.

Corollary

Given an integral domain R, and a polynomial p ∈ R[x1, · · · , xn], p
has a root in K if and only if the equation p′(x1, · · · , x3n) = 0 with

p′(x1, · · · , x3n) := p

(
x1 − x2

x3
, · · · , x3n−2 − x3n−1

x3n

)( n∏
i=1

x3i

)deg(p)

is partition regular over R \ {0}.
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Density Ramsey Theory: What is density? 1/2

For A ⊆ N we denote the natural upper density of A by

d(A) = lim sup
N→∞

|A ∩ [1,N]|
N

. (3)

In a countable cancellative commutative semigroup (S ,+), a
Følner sequence F = (Fn)∞n=1 is a sequence of finite sets s.t.

lim
N→∞

|(s + FN)△FN |
|FN |

= 0, for all s ∈ S . (4)

Given a Følner sequence F and a set A ⊆ S , the upper density
with respect to F is given by

dF(A) = lim
N→∞

|A ∩ FN |
|FN |

. (5)

The upper Banach density of A ⊆ S is given by

d∗(A) = sup
{
dF(A) | F is a Følner sequence

}
. (6)
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Density Ramsey Theory: What is density? 2/2

When (S ,+) = (N, ·) and pn denotes the nth prime, an example of
a Følner sequence F = (Fn)∞n=1 is given by

Fn = {pa11 pa22 · · · pann | 0 ≤ ai ≤ n ∀ 1 ≤ i ≤ n} (7)

The following alternative characterization of upper Banach density
was introduced in [16] for the case of (Z,+), then in more
generality in [17] and [2]. We only state a special case here.

Theorem

Let (S ,+) be a cancellative commutative semigroup. For A ⊆ S,

d∗(A) = sup
{
α ≥ 0 | ∀ F ∈ Pf (S) ∃ s ∈ S

s.t. |(F + s) ∩ A| ≥ α|F |
}

When R is a countable integral domain, we let d∗ denote the
upper Banach density in (R ,+), and d∗

× the upper Banach density
in (R \ {0}, ·).
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Szemerédi Theorems

Theorem (Szemerédi’s Theorem [24])

If A ⊆ N satisfies d(A) > 0 (or d∗(A) > 0), then A contains
arbitrarily long arithmetic progressions.

Theorem (Furstenberg, Katznelson [14])

If A ⊆ Zd satisfies d∗(A) > 0, then A contains arbitrarily large
d-dimensional cubes.

Theorem (Bergelson, Leibman [4])

If A ⊆ Zd satisfies d∗(A) > 0, and p1, · · · , pm : Zd → Zd are
polynomial functions with no constant term, then there exists
a, d ∈ Zd \ {(0, · · · , 0)} for which {a + pi(d)}mi=1 ⊆ A.

See also [25, Corollary 1.6] and [13, Corollary 2.12].
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Second main result (a special case)

Theorem (F., Jackson, Mance, 2024+)

1 Let us assume that Hilbert’s 10th problem over Q is
undecidable. There is no computable procedure (computer
program) to determine whether or not a given polynomial
equation has a solution in every set A ⊆ N with d(A) > 0. A
similar result holds when d(A) > 0 is replaced by d∗(A) > 0,
or by d∗

×(A) > 0.

2 Suppose that R = Fp for some prime p, or that R = R ′[t]
where R ′ is an integral domain. Then there is no computable
procedure to determine whether or not a given polynomial
equation has a solution in every A ⊆ R with d∗(A) > 0. A
similar result holds when d∗(A) > 0 is replaced by d∗

×(A) > 0.
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Reduction to HTP for density Ramsey theory 1/2

Lemma

Let R be a countably infinite integral domain with field of fractions
K. For any m ∈ N and any k1, · · · , km ∈ K× we have the
following:
(i) If A ⊆ R is such that d∗(A) > 0, then A contains a solution

to the system of equations

z4i−3 − z4i−2

z4i−1 − z4i
= ki for all 1 ≤ i ≤ m. (8)

Furthermore, the solution can be taken such that zi ̸= zj
when i ̸= j .

(ii) If A ⊆ R \ {0} is such that d∗
×(A) > 0, then A contains a

solution (z1, · · · , z4m) to the system (8), such that zi ̸= zj for
i ̸= j .
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Reduction to HTP for density Ramsey theory 2/2

Corollary

Let R be a countably infinite integral domain with field of fractions
K, and let p ∈ R[x1, · · · , xn].
(i) p has a root in K if and only if for any A ⊆ R with

d∗(A) > 0, there exist distinct z1, · · · , z4n ∈ A for which
p′(z1, · · · , z4n) = 0, where

p′(z1, · · · , z4n)

=p

(
z1 − z2
z3 − z4

, · · · , z4n−3 − z4n−2

z4n−1 − z4n

)( n∏
i=1

(z4n−1 − z4n)

)deg(p)

.

(ii) p has a root in K if and only if for any A ⊆ R \ {0} with
d∗
×(A) > 0, there exist distinct z1, · · · , z4n ∈ A for which

p′(z1, · · · , z4n) = 0.
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Future work

Question

Can we prove a version of the corollary on the last slide without
the assumption that z1, · · · , z4n ∈ A are distinct?

Question

Given a ℓ ∈ N and a finite system of linear equations, is there a
computable condition to determine whether or not the system is
ℓ-partition regular over Z (or over some integral domain R)?

Question

Given a δ ∈ (0, 1) and a finite system of linear equations, is there a
computable condition to determine whether or not the system has
a solution in every set A ⊆ Z with d∗(A) > δ? How about
d∗
×(A) > δ? What is we replace Z with an integral domain R?
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